
An Investigation into Bayesian Networks and
Gaussian Processes

Eden Attenborough
University of Lincoln

Lincoln, United Kingdom
28238148@students.lincoln.ac.uk

Abstract—In this assessment we looked at methods and algo-
rithms pertaining to bayesian networks and gaussian processes,
including structure learning of bayesean networks, parameter
estimation and inference, comparing and contrasting different
methods for each. We also looked at different algorithms and
methods related to gaussian processes.

Index Terms—Bayesean Networks, Gaussian Processes, Infer-
ence

I. INTRODUCTION

The amount of code written by ourselves differs by the part
of the task. Each section in turn describes the amount of code
written by ourselves, or in the case where an external module
or library was used, it is cited appropriately.

II. PART ONE - BAYESIAN NETWORKS

For part one, none of the original code written by the
lecturer remains. It was all written by ourselves, although
in some cases where an external library was used this is
referenced.

A. Structure Learning

Structure learning is done by using the file
structure_learning.py. It takes a path to a training
CSV file, a path to an output bayesian configuration file,
a method for structure learning, a scoring algorithm, and
optionally, a pruning algorithm. [1] was used for the structure
learning, which in turn sometimes uses [2]. Structures were
evaluated using the K2 score [6], the bayesian information
criterion (BIC) [3], Bayesian Dirichlet equivalent uniform
(BDeu) [4], and the Bayesian Dirichlet Sparse (BDs) [5]. The
structure learning was done by [1] or [2], the options being
PC Stable, Hill Climbing, or Naive-Bayes. There is also an
exhaustive search implementation but this wasn’t used as it
was infeasible for both datasets. We can also optionally prune
the network, using our implementation of the Chi Square and
G Square significance test.

Figure 1 shows resulting metrics on different structure learn-
ing algorithms for the Cardiovascular dataset, and Figure 2 for
the Diabetes dataset. The exhaustivesearch algorithm was not
tested as it is not feasible to use it in datasets with this number
of variables. For all datasets, and by all metrics, Naivebayes
was the most useful structure, followed by PCStable and
Hillclimb.

Hillclimb PCStable Naivebayes

−1.25

−1.2

−1.15

−1.1

·105

Structure learning algorithm

Sc
or

e

Structure metrics for Cardiovascular dataset

K2 BDeu BDs BIC

Fig. 1. Graph showing structure learning evaluation metrics for the Car-
diovascular dataset, discretized using the provided dataset. The exhaustive
search algorithm was not used as it was infeasible with this size of dataset.
Evaluation metrics [6] [4] [5] [3].

B. Parameter Estimation

Our system has two algorithms for parameter estimation,
which generate CPT (Conditional Probability) tables: Maxi-
mum Likelihood Estimation (MLE) and Bayesian Parameter
Estimation. The implementation of MLE was written by
ourselves, and the bayesian parameter estimation comes from
[1]. The CPTs for MLE were tested against the implementation
made by the lecturer, and were found to be identical.

Table I shows an example conditional probability table for
the Diabetes dataset, generated using our MLE implementation
on the variables P (Smoke|Gender,Alco).

C. Inference

For inference we have to possible options, exact or approxi-
mate. We use [2]’s implementation of variable elimination and
belief propagation.

Table II shows an example query conducted on the Diabetes
dataset, where CPTs were generated using the MLE method.



Hillclimb PCStable Naivebayes

−1,900

−1,800

−1,700

−1,600

Structure learning algorithm

Sc
or

e
Structure metrics for Diabetes dataset

K2 BDeu BDs BIC

Fig. 2. Graph showing structure learning evaluation metrics for the Diabetes
dataset, discretized using the provided dataset. The exhaustive search algo-
rithm was not used as it was infeasible with this size of dataset. Evaluation
metrics [6] [4] [5] [3].

TABLE I
CONDITIONAL PROBABILITY TABLE FOR VARIABLES

P (Smoke|Gender,Alco) GENERATED WITH MAXIMUM LIKELIHOOD
ESTIMATION ON Diabetes DATASET

Child Parents
S(Smoke) G(Gender) A(Alco) p

0 2 0 0.832885
0 2 1 0.354572
0 1 0 0.985105
0 1 1 0.861690
1 2 0 0.167115
1 2 1 0.645428
1 1 0 0.014895
1 1 1 0.138310

Table III shows an example query on the Cardiovascular
dataset, where this time CPTs were generated using the
alternate method.

We found that for all queries Variable Elimination was
significantly faster, with this effect increasing exponentially
with the complexity of the query (the number of variables
considered).

Our implementation make is possible to query multiple
variables at the same time, for example both Outcome and
Gluc, which returns results in n dimensions.

D. Inference Evaluation

So far we have only considered individual queries which
are not especially useful for evaluating the overall use-
fulness of models. To do this, we created the script
inference_evaluator.py which evaluates models, and
inference implementations on a test dataset by a number

TABLE II
RESULTS OF INFERENCE QUERY

P (Outcome|Insulin = 2, Glucose = 1, Age = 4) ON Diabetes
DATASET, WITH Naive-Bayes STRUCTURE AND MLE CPTS

Options
Method P (0) P (1) Time (Seconds)

Belief Propagation 0.8699 0.1301 6.41
Variable Elimination 0.8742 0.1258 0.05

TABLE III
RESULTS OF INFERENCE QUERY

P (Target|Age = 2,Weight = 3, Ap Hi = 3, Gluc = 3) ON
Cardiovascular DATASET, WITH Hillclimb STRUCTURE AND Bayesian

Parameter CPTS

Options
Method P (0) P (1) Time (Seconds)

Belief Propagation 0.758 0.242 23.08
Variable Elimination 0.7581 0.2419 0.12

of metrics, specifically accuracy, balanced accuracy, brier
score loss, F1 score, Precision, Recall, and Area under the
ROC. Table IV shows accuracy metrics on the Cardiovascular
dataset. We also tested on the other dataset but could not
include the results due to page count issues. We only tested
using variable elimination since the alternative was far too
slow with the number of queries needed. The exact evaluation
metric calculations were done by [7] when provided with a
results vector.

TABLE IV
INFERENCE ACCURACY METRICS WITH VARYING STRUCTURES AND CPT

METHODS ON THE Cardiovascular DATASET

Naive-Bayes Hillclimb PC-Stable
Metric MLEa BPb MLE BP MLE BP

Accuracy 0.42 0.43 0.42 0.36 0.42 0.43
Balanced Accuracy 0.5 0.5 0.47 0.4 0.45 0.41
Brier Score Loss 0.52 0.57 0.58 0.64 0.55 0.6

F1 Score 0.6 0.6 0.55 0.49 0.47 0.6
Precision 0.42 0.43 0.41 0.37 0.4 0.35

Recall 1 1.0 0.82 0.73 0.7 0.7
Area under ROC 0.5 0.5 0.47 0.4 0.45 0.47
Time (Seconds) 252 252 250 251 252 251

aOur implementation of Maximum Likelihood Estimation.
bBayesian Parameter Estimation from [1].

III. PART TWO - GAUSSIAN PROCESSES

A. Gaussian Processes Parameter Tuning

In order to investigate the effects of the parameters
on inference accuracy, we made minor modifications to
GaussianProcess.py such that parameters can be option-
ally tuned by command line arguments, and created a script
run_model_range.py that runs evaluations using a range
of different parameters on a logarithmic scale.

1) Noise: Figure 3 shows the effect of the noise parameter
on the accuracy, where multiple possible metrics of accuracy
are provided. It is important to consider that the values for the
other parameters are not static, they are optimised each time.



10−3 10−2 10−1 100 101
0

0.2

0.4

0.6

0.8

1

Noise Parameter Value

B
al

an
ce

d
A

cc
ur

ac
y,

F1
,A

U
C

,B
ri

er
,T

im
e

Accuracy metrics for noise parameter tuning

Time (Seconds)
Balanced Accuracy

F1 Score
Area under ROC

Brier Score

0

20

40

60

80

100

K
L

D
ivergence

KL Divergence

Fig. 3. Graph showing accuracy by a number of metrics, as well as time taken,
for a range of values with the noise parameter, using the diabetes dataset. For
each point, the values for the l and sigma f parameters was calculated using
the Limited-memory BGGS-B algorithm.

2) Sigma Kernel Parameter: By default, the system uses an
Isotropic Squared Exponential (ISE) Kernel. We investigated
the effect of changing its parameters. Figure 4 shows the effect
of varying the sigma parameter. Unlike Figure 3, the values
of the other parameters were kept constant in this test.

3) L Kernel Parameter: We also tested the effect of
changing the l parameter, but we couldn’t fit the plot on
this document. The raw CSV is enclosed within the code
submission. The shape was similar to Figure 4.

B. Kernel Analysis

We changed the code to use an arbitrary kernel from [7]. Us-
ing the existing infrastructure for hyperparameter optimization
with a limited memory Broyden–Fletcher–Goldfarb–Shanno
algorithm, we tested a number of different kernels. The results
for this are shown in Table V.

In conclusion, there was not a huge difference between
the different kernels. This is perhaps because the Matérn and
Rational quadratic kernels are derived from the Radial Basis
Function kernel. We wanted to test on more kernels but we
were disappointed by the number of kernels implemented in
[7].

REFERENCES

[1] E. Taskesen, ‘Learning Bayesian Networks with the bnlearn Python
Package.’. Zenodo, Nov. 10, 2023. doi: 10.5281/zenodo.10108817.

10−3 10−2 10−1 100 101 102
0

0.2

0.4

0.6

0.8

1

Sigma Parameter Value

B
al

an
ce

d
A

cc
ur

ac
y,

F1
,A

U
C

,B
ri

er
,T

im
e

Accuracy metrics for sigma parameter tuning

Time (Seconds)
F1 Score

Balanced Accuracy
Area under ROC

Brier Score

0

50

100

150

200

K
L

D
ivergence

KL Divergence

Fig. 4. Graph showing accuracy by a number of metrics, as well as time
taken, for a range of values with the sigma parameter, using the diabetes
dataset. Unlike Figure 3, the other parameters were set to constant values: 0.4
for noise and 6.955 for l.

TABLE V
TABLE SHOWING ACCURACY METRICS WITH DIFFERENT KERNELS

Kernel
Metric ISEa Matérnb Rational Quadraticc

Balanced Accuracy 0.75 0.77 0.76
F1 Score 0.67 0.7 0.69

Area under ROC 0.88 0.88 0.88
Brier Score 0.14 0.14 0.13

KL Divergence 40.8 35.8 39
Time (Seconds) 0.63 26 1

aDefault Isotropic Squared Exponential (Radial Basis Function)
bMatérn kernel from [7]
cRational Quadratic kernel from [7]

[2] Ankan, A. and Textor, J, ‘pgmpy: A Python Toolkit for Bayesian
Networks.’. Proceedings of the 14th python in science conference (scipy
2015) (Vol. 10), 2015

[3] Chickering, D.M., ‘A Transformational Characterization of Equivalent
Bayesian Network Structures.’. Proceedings of the Eleventh Annual
Conference on Uncertainty in Artificial Intelligence, 1995, pp. 87–98.

[4] Heckerman, D. and Geiger, D. and Chickering D.M., ‘Learning Bayesian
Networks: The Combination of Knowledge and Statistical Data.’. Ma-
chine Learning 20(3), 1995, pp. 197–243.

[5] Scutari, M. ‘An Empirical-Bayes Score for Discrete Bayesian Net-
works.’. Journal of Machine Learning Research, 2016, pp. 438–48.

[6] Korb, K. and Nicholson, A.E., ‘Bayesian Artificial Intelligence.’. Chap-
man & Hall/CRC, 2nd edition, 2010

[7] Varoquaux, G. and Buitinck, L. and Louppe, G. and Grisel, O. and
Pedregosa, F. and Mueller, A., ‘Scikit-Learn: Machine Learning Without
Learning the Machinery’, Association for Computing Machinery, 19:1,
January 2015, pp. 29–33


