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Abstract—In this assessment we review and evaluate three pa-
pers in the field of learning from demonstration of manipulators.
We also present mathematical formulation of Dynamic Movement
Primitives and Stable Estimator of Dynamical Systems, and test
their implementations on previously created datasets.

Index Terms—Learning from Demonstration, Dynamic Move-
ment Primitives, Stable Estimator of Dynamical Systems, Gaus-
sian Mixture Models, Gaussian Mixture Regression, Time-
invariant Dynamical Systems

I. INTRODUCTION

Learning from demonstration (LfD) in the context of
robotics means robots acquiring new skills by learning from
a human. Advantages of this approach include the east of
introducing complex skills, and making the programming of
robots simpler; that is, they do not need to be programmed by
an expert. LfD has often been used for the control of manipu-
lators, which are very important in the field of manufacturing,
which increases profitability by relying on humans less; and in
the field of healthcare assistance robots, for instance surgical
manipulators. Surprisingly, LfD has also been used in the field
of mobile robotics- for instance controlling the trajectories
of autonomous aerial vehicles; and crucially, for locomotive
robots, enabling bipedal robots to walk [1].

In this document, Section II provides a brief review of
three learning from demonstration system and compares them.
Section III outlines the mathematical formulation of Dynamic
Moment Primitives (DMPs) and Stable Estimator of Dy-
namical Systems (SEDSs). Finally, Section IV describes and
implementation of these algorithms on some given datasets,
and discusses their hyper-parameters.

II. LITERATURE REVIEW

[3] pertains to a soft-robotic manipulator. The field of
animal-based soft robotics has considerable advantages, such
as less precision being required and better safety when deal-
ing with fragile objects, but creates additional challenges
that are discussed here. The manipulator is made from an
ionic polymer-metal composite (IPMC), a flexible and soft
manipulator. Notably it has many more degrees of freedom
than a typical manipulator. Demonstrations were difficult-
the manipulator was controlled through teleoperation of a
single joint at a time, an un-ideal movement, with a camera
observing the manipulator at certain points, a very slow

process. The demonstration was determined from this obser-
vation, not from the teleoperation. This requires a mapping
task, which seems unclear how they achieved. What is clear,
is that the demonstrations were fed into a Savitkzy-Golay
Filter pre-processing. The demonstrations were encoded with
Gaussian Mixture Models. The parameters from the GMMs
were estimated using an expectation maximization algorithm,
which was initialized by a k-means clustering algorithm. Using
the k-means clustering as a starting point for the expectation
maximization algorithm is a good idea, since that algorithm is
sensitive to its initialization. Paths were then generalized with
Gaussian Mixture Models. Unfortunately, their manipulator
could not guarantee a solution due to a lack of generalizability
in the Gaussian Mixture Models. Moreover, it only worked in
a static environment, in which the initial location is known.

[2] is a learning from demonstration algorithm proposal
designed for a manipulator, called an augmented Joint-space
Task-oriented Dynamical System (JT-DS)): It computes a mo-
tion in joint-space, that provably converges to a task-space
target; that ‘is formulated in such a way that joint-space
motions are learned from demonstrations as synergies; and can
transit through kinematic singularities’. These learned move-
ment behaviour synergies are modulated through joint space
with a Linear Parameter Varying system, for who’s parameters
are determined by reducing the dimensionality of the joint
space. They evaluated a number of dimensionality-reducing
algorithms to generate these embeddings, and selected Kernel
Principal Component Analysis with the Radial Basis Function
as the kernel. The number of local synergy regions, and the
activation parameters for the weighting of these regions, are
determined by fitting a Gaussian Mixture Regression model
from the demonstrations.

[4] is a learning from demonstration manipulator designed
to assist children with cerebral palsy. Physical therapy has
been proven to help children with cerebral palsy with their
symptoms and improve their quality of life, but is an expensive
and repetitive task which is ideal to be conducted by robots.
The implementation consists of a manipulator that assists
and corrects the child’s movement of an object between two
locations, a ‘pick and place’ task. The demonstration is kinaes-
thetic, but not done on the manipulator itself. Instead, a helper
moves a second, ‘slave’ manipulator to initially help move
the main, ‘master’ manipulator. Consequently, it is therefore



TABLE I: Table comparing the differences between the reviewed learning from demonstration systems

Implementation What is learned Demonstration Type Methods used Stability Convergence
[2] Low level control inputs Kinaesthetic teaching Dimensionality reduction

with PCA; GMMs
Guaranteed, with Lyapunov Guaranteed

[3] Low level control inputs Observation of
keypoints with a
camera. Demonstrations
difficult due to the soft
manipulator’s movements
need to be pre-planned by
the demonstrator

Gaussian Mixture Mod-
els with optimal parame-
ters estimated with Expec-
tation Maximization algo-
rithm, with initialization
from K-Means clustering;
Gaussian Mixture Regres-
sion

Not guaranteed Not guaranteed

[4] Low level control inputs Kinaesthetic teaching with
a mapping between two
manipulators

Gaussian Mixture Models
and Gaussian Mixture Re-
gression, unclear how pa-
rameters are selected

Unclear Unclear

required to have some sort of force-feedback system, to pro-
vide haptic feedback about the relative movement intentions
of the two manipulators, which the researchers implemented.
Their is an additional problem mapping the movements of
the two manipulators, since they were not the same model.
The researchers used a simple PID control loop, but it is
unclear how well this will work with manipulators of different
capabilities. The work uses a Gaussian Mixture Model to
model movements and a Gaussian Mixture Regression model
for movements, however, the work is unclear about the stability
and convergence of the system; the main focus of the work
seems to me the mapping and haptic feedback system.

In conclusion, we have reviewed three works in the context
of learning from demonstration. Two of the works used
novel demonstration methods, and ‘traditional’ learning from
demonstration algorithms, and the other proposed a novel
learning from demonstration algorithm. A table showing dif-
ferent features of these works is shown in Table I. In the
literature, there is a section of works that make adaptions to
already existing works. For instance, [5] makes an adaption
to the Dynamic Movement Primitive algorithm for encoding
motion data, using convolutional neural networks for the
forcing term in that algorithm, and using a camera for the
demonstration. This is a novel approach, but its usefulness is
perhaps limited by the amount of training data required. CNNs
require a lot of training data, and in this context the training
data is derived from demonstrations, which are real actions in
the world; consequently, it may take a lot of demonstrations to
achieve anything accurate. The researchers are aware of this,
and they suggest that a CNN would only be used as a starting
point for some re-enforcement learning system.

Moreover, in our research we noticed some patterns of note.
For example, kinaesthetic demonstrations seem to be generally
used for manipulators and observation-based demonstrations
were generally used by mobile robots. Gaussian Mixture
Models seemed to the the most common way of modelling
movements.

III. DYNAMIC MOVEMENT PRIMITIVES AND STABLE
ESTIMATOR OF DYNAMICAL SYSTEMS

A. Dynamic Movement Primitives

Dynamic Movement Primitives (DMPs) model movements.
For each joint, the acceleration q̈ is provided, given the speed
q̇, q, s:

q̈ = I(q, q̇) + f(s) (1)

It is a combination of a non-linear and linear system:

I(q, q̇) = kgain(g − d)− dgainq̇ (2)

A simple PD controller from control theory, which guaran-
tees convergence to the goal; g. f(s; θ) is the forcing term,
the non-linear element; and s is the time. The forcing term, is
represented by:

f(s) =

∑N
i=1 wihi(s;µh, σ

2
h)∑N

i=1 wi

s(g − q0) (3)

A weighted sum of radial basis functions, where:

hi(s;µh, σ
2
h) = exp(− (s− µh)

2

2µ2
h

)

The vector w is a hyper-parameter, derived from a machine
learning algorithm. N is simply the number of radial basis
functions.

Then, it can be trained, given a teaching trajectory
T, q̈1:Td , q̇1:Td , q1:Td , and a target q0; we first calculate the
forcing term:

fd = q̈d − I(qd, q̇d) = q̈d − (kgain(g − d)− dgainq̇) (4)

Then for each radial basis function, the locally weighted
quadratic error criterion is minimized:

Ji =

T∑
t=1

hi(s)(fd(s)− wiqt(g − q0))
2 (5)

This gives the result:



wi =
rTΓifd
rTΓir

The parameter of the number of radial basis functions is
critical, there is a trade-off between complexity and accuracy.
This is discussed more in Section IV.

B. Stable Estimator of Dynamic Systems

At the core of Stable Estimator of Dynamic Systems
(SEDSs) are Gaussian Mixture Models (GMMs) and Gaussian
Mixture Regression (GMR). Gaussian Mixture Models are
an alternative method of modelling joint movements. This
document does not provide the mathematical basis of GMMs
and GMR, since there is not enough space. The mathematical
basis for SEDS can be described the following way. Given
a demonstration D = {ξ1, ξ̇1, ξ2, ξ̇2, ..., ξn, ξ̇n}, the objective
is to ‘learn’ a mapping f() like ξ̇ = f(ξ). Using Gaussian
Mixture Regression:

p(ξ̇|ξ) =
N∑

n=1

on(ξ)N (ξ̇|ξ;mn
ξ̇|ξΣ

n
ξ̇|ξ) (6)

ξ̇ = f(ξ) =

N∑
n=1

hn(ξ)A
nξ + bn

Where:

An = Σn
ξ̇ξ

1

Σn
ξ̇ξ

bn = mn
ξ̇
−Anmn

ξ

The parameters of the Gaussian Mixture Model can be
estimated by solving a minimization problem, minimizing the
mean squared error:

minθJ(θ) =
1

τ

N∑
n=1

Tn∑
t=0

∥ξ̇t,npred − ξ̇t,ndemo∥
2 (7)

Alternatively the negative log-likelihood can be used. Either
way, they are subject to the SEDS constraints:

bk = −Akξ
⋆

Ak + (Ak)
T ≺ 0

Σk ≻ 0

0 ≤ ok ≤ 1

K∑
k=1

ok = 1

Where k is the number of gaussian components, ξ⋆ is the
desired stability point, and ok is the mixture coefficient.
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Fig. 1: Plots showing how DMP distance to the original
converges with the number of radial basis functions used.
Since there was a different number of data points for the
estimated path and the original path, Dynamic Time Warping
(DTW) [6] distance was used (left y axes). Time taken for the
DMP to roll out was used as a metric of complexity (right y
axes). All axes (besides time taken) are logarithmic.
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Fig. 2: Plots showing how DMP trajectories are affected by
the number of Radial Basis Functions



IV. IMPLEMENTATION AND EVALUATION

A. Dynamic Movement Primitives

A script was written to apply Dynamic Movement Prim-
itives (DMPs) to the provided datasets. An experiment was
run to see how the number of Radial Basis Functions (RBFs)
affected the trajectories compared to the original. A script was
created that executed DMP rollouts with a varying number of
RBFs, from 1 to 100000, with a logarithmic range between
them. As a metric of complexity, the time taken to compute
the DMP rollout was recorded. It is difficult to compare the
original trajectory with the computed trajectory. If there was
the same number of points for both, Root Mean Squared Error
could be used. However there was not an equal number of
points generated; consequently another method had to be used.
We selected the Dynamic Time Warping algorithm [6], which
is an ideal metric for this task. The euclidean distance was used
for the distance function. The results for this experiment are
shown in Figure 1. Plots showing how the number of RBFs
affects the trajectories is shown in Figure 2. The speed at
which the DTW distance converges depends on the complexity
of the trajectory. A greedy algorithm to find an optimal number
of RBFs could be to iteratively keep adding more until the
distance difference between iterations reached a certain value.

B. Stable Estimator of Dynamical Systems

A MATLAB implementation of SEDS was preformed upon
the given dataset. Experiments were run to see how the number
of gaussians parameter affects the similarity from the original.
As before, DTWs [6] were used as a metric of distance from
the original. The results of these experiments are shown in
Figure 3. Unlike with DMPs, there is no linear or exponential
relationship between the hyper-parameter and its efficacy.
Consequently, it is not possible, as it is with DMPs, to use an
elbow point analysis algorithm to estimate the ideal parameter
value. Instead, a method similar to [3] can be used, which use
the result of a clustering algorithm as the starting point. [3]
used K-Means, we experimented with using DBScan.
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Fig. 3: Plots showing how the number of gaussians affects the
result from SEDSs. For the Line and C Shape, higher gaussians
were not plotted as their simple shape lead to an overfitting-
type error.
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Fig. 4: Figure showing how the number of gaussians affects
the results from SEDSs, as before, DTW [6] is used as a
metric of similarity. The y axis is logarithmic, to make it easier
to compare with Figure 1. Moreover, it also emphasizes the
difference between different number of gaussians.
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